後遺障害逸失利益と中間利息の控除、ライプニッツ係数・ホフマン係数とは?

逸失利益計算式

交通事故の後遺障害が残ると、後遺障害逸失利益の賠償を受けることができます。

その計算にあたって、逸失利益から中間利息を控除すること、控除する額の計算式にライプニッツ係数またはホフマン係数を使うことは耳にしたことがあると思います。

ここでは、中間利息を控除する意味、ライプニッツ係数・ホフマン係数とは何かについて詳しく解説します。計算の理屈が理解できるように丁寧に書いてあります。

なお、末尾に、ライプニッツ係数・ホフマン係数の表を掲載しておきますので、ご利用ください。

後遺障害逸失利益の計算式

後遺障害逸失利益とは、後遺障害によって働く力が失われたために、将来的に稼ぐことができなくなった収入(利益)です。

その計算式は、次のとおりです。

後遺障害逸失利益=(基礎収入×労働能力喪失率×労働能力喪失期間)ー中間利息

中間利息とは

逸失利益の算式の最後に「ー(マイナス)」で差し引かれている「中間利息」とは、受けとった賠償金に対する「将来の利息」のことです。

逸失利益は、事故なく働き続けていれば稼ぐことができたはずの収入です。

しかし、本来、来年の収入は来年働いて受け取るものですし、67歳(※)の時点の収入は67歳の時に働いて受け取るものです。

一方で、逸失利益は将来分割払いで受け取るはずだったはずの収入を、損害賠償金として今まとまった一時金で全額受領できます。

ところが、被害者がこの一時金を、今、投資などで利殖した場合には、毎年、将来に向けて利息を受け取ることできてしまいます。被害者が受けた損害を超えて儲けさせることは不公平ですから、将来の利息を差し引く必要があるのです。

この中間利息を差し引く計算方法が、ライプニッツ方式やホフマン方式による計算です

以下では、これらについて詳細に説明します。

※労働能力喪失期間は原則として、症状固定の時期から67歳までとしています。

中間利息控除の計算式とは

中間利息の簡単な計算方法

控除する中間利息は、毎年生じる利息を計算して合計すれば算出できますが、いちいち各年度ごとの利息を計算するのでは、とても手間がかかります。

実は、簡単な計算方法があるのです。

「現価」を計算するライプニッツ方式・ホフマン方式

例えば、症状固定が57歳で、67歳までの10年間で1000万円の収入が失われるとしたケースを想定してみましょう。

このケースで、逸失利益を10年後に中間利息も含めてちょうど1000万円となるようにするには、いま現在受領する金額をいくらに設定すれば良いのかを計算できればいいわけです。

これは、10年後の1000万円が、いま現在の価値でいくらとなるかという計算です。この「いま現在の価値」を「現価」と呼びます。

この現価を計算する方法が、ライプニッツ方式やホフマン方式なのです。

ライプニッツ係数・ホフマン係数とは

「現価」の算出は、損害額に、ある数値(係数)を掛けることで算出します。その係数が「ライプニッツ係数」や「ホフマン係数」と呼ばれるものです。

中間利息は、単利で計算する場合と複利で計算する場合があります。単利とは元本にだけ利息をつけるもので、複利とは、元本だけでなく利息に対しても、さらに利息をつけるものです。

中間利息を複利で計算するのが「ライプニッツ方式」であり、これにより算出した係数がライプニッツ係数です。

対して、中間利息を単利で計算するのが「ホフマン方式」であり、これにより算出した係数がホフマン係数です(※)。

※ライプニッツ方式、ホフマン方式の中でも、さらにいくつかの異なる計算方法があります。このため、ここで説明するライプニッツ方式を1年複利方式と呼んだり、ホフマン方式を新ホフマン方式と呼んでいる文献もあります(赤い本など)。しかし、現在の実務で使われるのは、ほとんどが、ここに説明する2つの方式だけなので、ここでは「ライプニッツ方式」と「ホフマン方式」と呼ばせていただきます。

理由は後述しますが、現在裁判実務での圧倒的主流は、ライプニッツ方式です。しかし、計算を理解するために、より計算が単純なホフマン方式から先に説明します。

ホフマン方式の「現価」計算

例:被害者甲は、後遺障害のために退職しました。事故がなければ退職金は満額3000万円をもらえるはずでしたが、それが1000万円も減額されてしまいました。

退職金の損害額は1000万円ですが、いま1000万円を受けとると、もともと退職金を受領できた時期までの中間利息をもらいすぎてしまいます。そのもらいすぎの金額がいくらなのかを見てみましょう(年単利で利率5%とします)。

(a)退職金は1年後にもらえるはずだったとき

(賠償金1000万円)×(年利5%)×1年間=1年間の利息は50万円

いま1000万円を受けとると、1年後には1050万円になり、50万円もらいすぎ。

(b)退職金は2年後にもらえるはずだったとき

(賠償金1000万円)×(年利5%)×2年間=2年間の利息は100万円

いま1000万円を受けとると、2年後には1100万円になり、100万円もらいすぎ。

(c)退職金は3年後にもらえるはずだったとき

(賠償金1000万円)×(年利5%)×3年間=3年間の利息は150万円

いま1000万円を受けとると、3年後には1150万円になり、150万円もらいすぎ。

もらいすぎを解消するための計算

では、もらいすぎとならないためには、いまの時点で、いくらの金額を受けとれば良いのでしょう?(これが「現価」計算です)

上の各計算式は、次のようにまとめることができます。

(a) 1年後の金額=賠償金+(賠償金×年利)
=賠償金×(1+年利)

(b) 2年後の金額=1年後の金額+2年め分の利息
=賠償金×(1+年利)+(賠償金×年利)
=賠償金×(1+年利×2年)

(c) 3年後の金額=2年後の金額+3年め分の利息
=賠償金×(1+年利×2年)+(賠償金×年利)
=賠償金×(1+年利×3年)

この計算式で、A年後の金額をY賠償金をXとしてみます。

Y=X×(1+年利×A年)

X=Y÷(1+年利×A年)
=Y×1÷(1+年利×A年)

A年後にもらえるはずだったY円(1000万円)を、いま受けとるときは、Y円に「1÷(1+年利×A年)」を掛ければ、いま受領する金額X円(現価)が計算できるわけです。

この「1÷(1+年利×A年)」が、ホフマン方式の係数です。

試しに年利5%で計算してみましょう。

1年目=1÷(1+年利0.05×1年)=1÷1.05=0.9523……

2年目=1÷(1+年利0.05×2年)=1÷1.1=0.9090……

3年目=1÷(1+年利0.05×3年)=1÷1.15=0.8695……

ホフマン方式での、この各年ごとの係数を一覧表にしたものが、ホフマン方式の「現価表」です。

「A年後にもらえるはずだったY円は、いまの時点での価値(現価)はX円だ」と計算するための係数を一覧にしたものなので「現価表」というわけです。

ライプニッツ方式の「現価」計算

さて、ホフマン方式が中間利息を単利で計算していたのに対して、これを複利で計算するのがライプニッツ方式です。

複利とは、元本だけでなく、利息に対してもさらに利息が発生する計算方法です(※)。

※同じく複利でも、半年ごとに利息を元本に組み入れて利息をつける半年複利方式もありますが、実務で使われるのは、ここで説明するとおり、1年ごとに利息を元本に組み入れて複利とする1年複利方式です。

先の場合と同じように、被害者の損害額が1000万円の場合、複利の中間利息によって、幾らに増えてしまうかを見てみましょう(年複利で利率は5%とします)。

(a)退職金は1年後にもらえるはずだったとき

(賠償金1000万円)×(年利5%)×1年間=1年間の利息は50万円

いま1000万円を受けとると、1年後には1050万円になり、50万円もらいすぎ。

(b)退職金は2年後にもらえるはずだったとき

1年目は単利と変わりありませんが、2年目からが違います。複利ですから、2年目以降の元金は前年の元利合計額となります。

元金1050万円+(元金1050万円)×(年利5%)=1050万円+52万5000円=1102万円

いま1000万円を受け取ると、2年後には1102万円になり、102万円もらいすぎ。

(c)退職金は3年後にもらえるはずだったとき

元金1102万円+(元金1102万円)×(年利5%)=1102万+55万1000円=1157万1000円

いま1000万円を受けとると、3年後には1167万1000円になり、167万1000円もらいすぎ。

もらいすぎを解消するための計算

では、もらい過ぎないためには、今の時点で、いくらの金額(現価)を受け取れば良いのでしょう?

上の各年の計算式は、次のようにまとめることができます。

(a) 1年後の金額=賠償金+(賠償金×年利)
= 賠償金×(1+年利)→これを(ア)とします。

(b) 2年後の金額=(ア)+2年め分の利息
= (ア)+(ア) ×年利 →これを(イ)とします。

(c) 3年後の金額=(イ)+ 3年め分の利息
= (イ)+(イ)× 年利

このまとめた式に、数値をいれて整理します。

A年後の金額をY、いま受領する賠償金(現価)をXとします。金利は5%です。

(a) 1年目の金額=X+(X×5%)
=X(1+5%)

(b) 2年目の金額=X(1+5%)+X(1+5%)×5%
=X(1+5%)(1+5%)
=X(1+5%)2

(c) 3年目の金額=X(1+5%)2+X(1+5%)2×5%
=X(1+5%)2(1+5%)
=X(1+5%)3

もらいすぎを解消するためのライプニッツ係数

ここまで来れば、もうおわかりでしょう。

A年後にもらえるはずだった賠償金Y円を、いま受領するときの「現価X円」を計算する式は次のとおりとなります。

Y=X(1+5%)A
X=Y÷(1+5%)A
=Y÷(1+年利)年数

この「Y÷(1+年利)年数」、つまり「1/(1+年利)年数」がライプニッツ方式の係数です。

試しに年利5%で計算してみましょう。

1年目=1÷(1+年利0.05)=1÷1.05=0.9523……

2年目=1÷(1+年利0.05)2=1÷1.1025=0.9070……

3年目=1÷(1+年利0.05)3=1÷1.175625=0.8638……

ライプニッツ方式での、この各年ごとの係数を一覧表にしたものが、ライプニッツ方式の「現価表」です。

中間利息の利率(年5%)について

上の計算では、利率はすべて年5%としました。

中間利息を計算する際の利率は、民法(404条)が定める民事法定利率である年利5%によるとするのが最高裁の判例だからです(※)。

最高裁平成17年6月14日判決

もっとも、改正民法では、民事法定利率は年利3%に引き下げられ(改正民法404条2項)、その後3年ごとに見直しされることになりました(同404条3項)。

改正法は、2020(令和2)年4月1日に施行されますので、同日以後に発生した交通事故では、この改正法に従うことになります。

「現価表」と「年金現価表」

現価表の使い方

さて、ホフマン方式でも、ライプニッツ方式でも、A年後にもらえるはずだった金銭を、いま受けとるときの現価を一覧にしたものが各「現価表」でした。

退職金の場合、もらえる機会は通常一度ですので「現価表」の係数で計算することになります。

例えば、60歳で退職金がもらえるはずだった被害者が40歳で後遺障害となり退職を余儀なくされ、退職金が500万円減額されてしまったというケースでは、20年後に受け取れるはずであった500万円をいま受けとるときの現価を計算すれば良いのです。

単利で計算するなら、利率を5%としたときの、20年のホフマン方式の係数は0.5ですから、

500万円×0.5=250万円

となります。

複利で計算するなら、利率を5%としたときの、20年のライプニッツ方式の係数は0.3768ですから、

500万円×0.3768=188万4000円

となります。

毎年発生する所得の現価計算

では、退職金のように1回だけ支給されるものではなく、毎年発生する所得の現価はどのように計算すれば良いでしょうか?

例えば、労働能力を100%失った被害者(40歳)の事故前の年収が400万円だった場合、本来なら、今後、67歳まで27年間にわたって、毎年、400万円を受け取ることができたはずです。

その27年分の損害賠償金(27年×100%×400万円=1億0800万円)を、いま一括で受けとるときの現価を計算することになります。

この場合、中間利息は、27年間、毎年毎年発生します。症状固定から1年後に得られるはずだった収入の現価は、現価表の1年目の係数で算出できます。症状固定から2年後に得られるはずだった収入の現価は、現価表の2年目の係数で算出できます。

同様に、2年目以後、27年後まで、それぞれの年度に受けとることができたはずの収入の現価は、各年の現価表の係数で個別に算出できます。

そして、27年後までに受け取ることができたはずの収入総額の現価は、各年ごとの係数で計算した原価の合計額です。

したがって、各年数の係数を合計した(積算した)数字を係数として、損害額に掛ければよいのです。

年金原価表の使い方

この各年度の係数を積算した表が、「年金現価表」です。今後、年ごとに発生してゆく損害額が積み重なった金額の、いまの現価を一覧にしたので「年金」現価表と呼ぶのです。

例えば、ライプニッツ方式の「現価表」は、1年目が0.9523、2年目が0.9070です。

そして、ライプニッツ方式の「年金現価表」の2年目の係数は、1.8594であり、単純に「現価表」の1年目0.9523及び2年目0.9070を足し算しただけであることがわかります。この理屈はホフマン方式でも同じです。

上の例では、労働能力を100%失った被害者(40歳)の事故前の年収が400万円だった場合、67歳までの27年の「年金現価表」の係数を「400万円×喪失率100%」に掛ければよいのです。

単利の場合、ホフマン方式の年金現価表の27年の係数は16.8045ですから、

400万円×100%×16.8045=6721万8000円

が現価となります。

複利の場合、ライプニッツ方式の年金現価表の27年の係数は14.6430ですから、

400万円×100%×14.6430=5857万2000円

が現価となります。

被害者が18歳未満の場合

被害者が18歳未満の場合は、年金現価表をそのまま使うことはできません。

年金現価表は、症状固定時以後、毎年ごとに収入の減少という損害が発生することを前提として計算されています。

しかし、通常は18歳が就労開始時となるので、18歳になるまでは、そもそも損害が発生していないからです。

この場合、「労働能力喪失期間に対応する係数」から「18歳に達するまでの年数に対応する係数」を差し引いた値を係数として使用します。

例:被害者が5歳の場合

労働能力喪失期間に対応する係数

67歳マイナス5歳=62年間が労働能力喪失期間

62年間に対応するライプニッツ方式の年金現価表係数は、19.0288

18歳に達するまでの年数に対応する係数

18歳マイナス5歳=13年

13年間に対応するライプニッツ方式の年金現価表係数は、9.3936

19.0288ー 9.3936=9.6352

こうして、9.6352をライプニッツ方式の年金現価表係数として利用します(※)。

※「赤い本」や「青本」には、18歳未満の者の労働能力喪失期間を67歳までとした場合とした場合の上の計算による各年齢ごとの係数が一覧表として記載されていますから、そちらを利用すれば簡便です。
「赤い本」正式名「民事交通事故訴訟・損害賠償額算定基準」(日弁連交通事故相談センター東京支部)2019年版上巻426頁
「青本」正式名「交通事故損害額算定基準」(同センター本部)2018年版294頁

自賠責保険における中間利息控除

自賠責保険から支払われる金額を決める基準でも、逸失利益の中間利息控除は、年利を5%として、ライプニッツ方式の年金現価表の係数を用いて計算します。18歳未満の被害者についての計算方法も同じです。

ただし、自賠責保険の計算では、被害者が54歳以上の場合、67歳に達するまでの年数を労働能力喪失期間(就労可能年数)とするのではなく、その年齢に応じた平均余命の半分(端数は切り上げ)の年数を労働能力喪失期間と定めています。

例えば、男性55歳の場合、67歳までは12年間ですが、男性55歳の平均余命28年の半分である14年を労働能力喪失期間としています(※)。

※「自動車損害賠償責任保険の保険金等及び自動車損害賠償責任共済の共済金等の支払基準」平成13年金融庁・国土交通省告示第1号・別表Ⅱ-1

複利(ライプニッツ)か単利(ホフマン)か

さて、上に述べてきたとおり、実務では、複利によるライプニッツ方式での計算が圧倒的に多数です。

かつては、裁判所ごとに採用する方式が異なり、東京地裁はライプニッツ方式、大阪地裁や名古屋地裁はホフマン方式でした。

肝心の最高裁は、いま現在でも、どちらの方式も不合理ではないから、どちらを採用してもかまわないという立場です(※)。

※ライプニッツ方式につき、最高裁昭和53年10月20日判決
ホフマン方式につき、最高裁平成2年3月23日判決

東京・名古屋・大阪の各地方裁判所がライプニッツ方式を採用

しかし、地域間格差は好ましくないので、1999(平成11)年11月、東京・名古屋・大阪の各地方裁判所民事交通部が、ライプニッツ方式を採用する旨の共同宣言を発表しました(※)。

※「交通事故による逸失利益の算定方式についての共同提言」判例タイムズ1014号62頁

これ以後、実務では、大部分の裁判例がライプニッツ方式を採用しており、大部分の弁護士も裁判や示談交渉で、ライプニッツ方式で計算した金額を請求しています。

しかし、中間利息の控除とは、損害賠償金の減額ですから、複利計算をするライプニッツ方式のほうが被害者に不利で、加害者・保険会社に有利な計算方式です。

そして、共同提言には何の拘束力もありませんし、最高裁がどちらの方式でもかまわないと認めているのですから、被害者側としては、自分に有利なホフマン方式で計算すれば良いのです。

ライプニッツ方式で計算するのは、なんとなく実務の慣例がそうなっているからという以上の意味はありません(※)。

※参考:「交通賠償のチェックポイント」(弁護士高中正彦他編著・弘文堂)128頁

できるだけ有利な賠償金を受け取るためには、交通事故事件に強い弁護士に「ホフマン方式で請求してください」と相談しましょう。

土日の電話受付対応、弁護士報酬は「後払い」、初回相談料と着手金は完全無料!

土日の電話受付対応、弁護士報酬は「後払い」、初回相談料と着手金は完全無料!

全国対応の「交通事故専門チーム」によるサポートが特徴の法律事務所です。まずは、交通事故専門チームによる「慰謝料無料診断」をご利用下さい。
お電話でのお問い合わせはこちら
050-5267-6329
[電話受付]平日 9:30~18:00 土日祝 9:30~18:00
電話で相談する 弁護士詳細情報はこちら 弁護士詳細情報はこちら

参考:ライプニッツ方式・ホフマン方式 表

ホフマン方式(1年単利)
現価表年金現価表
利率5%5%
年数
10.952380950.9524
20.909090911.8615
30.869565222.7311
40.833333333.5644
50.800000004.3644
60.769230775.1336
70.740740745.8743
80.714285716.5886
90.689655177.2783
100.666666677.9450
110.645161298.5902
120.625000009.2152
130.606060619.8213
140.5882352910.4095
150.5714285710.9809
160.5555555611.5365
170.5405405412.0770
180.5263157912.6033
190.5128205113.1161
200.5000000013.6161
210.4878048814.1039
220.4761904814.5801
230.4651162815.0452
240.4545454515.4997
250.4444444415.9441
260.4347826116.3789
270.4255319116.8044
280.4166666717.2211
290.4081632717.6293
300.4000000018.0293
310.3921568618.4215
320.3846153818.8061
330.3773584919.1835
340.3703703719.5539
350.3636363619.9175
360.3571428620.2746
370.3508771920.6255
380.3448275920.9703
390.3389830521.3093
400.3333333321.6426
410.3278688521.9705
420.3225806522.2931
430.3174603222.6106
440.3125000022.9231
450.3076923123.2308
460.3030303023.5338
470.2985074623.8323
480.2941176524.1264
490.2898550724.4163
ライプニッツ方式(1年複利)
現価表年金現価表
利率5%5%
年数
10.952380950.9524
20.907029481.8594
30.863837602.7233
40.822702473.5460
50.783526174.3295
60.746215405.0757
70.710681335.7864
80.676839366.4632
90.644608927.1078
100.613913257.7218
110.584679298.3064
120.556837428.8633
130.530321359.3936
140.505067959.8987
150.4810171010.3797
160.4581115210.8378
170.4362966911.2741
180.4155206511.6896
190.3957339612.0853
200.3768894812.4622
210.3589423612.8212
220.3418498713.1630
230.3255713113.4886
240.3100679113.7987
250.2953027714.0940
260.2812407314.3752
270.2678483214.6431
280.2550936414.8981
290.2429463215.1411
300.2313774515.3725
310.2203594715.5928
320.2098661715.8027
330.1998725416.0026
340.1903548016.1929
350.1812902916.3742
360.1726574116.5469
370.1644356316.7113
380.1566053616.8679
390.1491479717.0171
400.1420456817.1591
410.1352816017.2944
420.1288396217.4232
430.1227044017.5459
440.1168613317.6628
450.1112965117.7741
460.1059966817.8801
470.1009492117.9810
480.0961421118.0772
490.0915639118.1687

注:現価表は小数点以下9桁目を四捨五入。年金現価表は小数点以下5桁目を四捨五入。
18歳から67歳まで49年間について計算した表です。

交通事故に強い弁護士に無料相談できます

  1. 保険会社が提示した示談金・慰謝料に不満だ
  2. 事故の加害者・保険会社との示談交渉が進まない
  3. 適正な後遺障害等級認定を受けたい

弁護士に相談することで、これらの問題の解決が望めます。
保険会社任せの示談で後悔しないためにも、1人で悩まず、今すぐ弁護士に相談しましょう。

土日の電話受付対応、弁護士報酬は「後払い」、初回相談料と着手金は完全無料!

土日の電話受付対応、弁護士報酬は「後払い」、初回相談料と着手金は完全無料!

全国対応の「交通事故専門チーム」によるサポートが特徴の法律事務所です。まずは、交通事故専門チームによる「慰謝料無料診断」をご利用下さい。
お電話でのお問い合わせはこちら
050-5267-6329
[電話受付]平日 9:30~18:00 土日祝 9:30~18:00
電話で相談する 弁護士詳細情報はこちら 弁護士詳細情報はこちら
都道府県から交通事故に強い弁護士を探す

あなたへおすすめの記事